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According to existing concepts as a result of high electronic thermal conductivity 
an extended region of hot electrons is formed in the front of a rather strong shock wave 
propagating in a plasma and an abrupt (isothermal with respect to the electron temperature) 
density jump, due to the ion viscosity, is introduced into that region [i, 2]. The isothermal 
jump is a necessary consequence of the high electronic thermal conductivity [i, 3]. As the 
Mach number increases, however, the thickness of the density jump decreases while the mean 
free path of the particles increases and when these quantities become equal, the hydrodynamic 
approximation becomes unacceptable, generally speaking. 

Moreover, with increasing Mach number M the energy of the directed motion grows in 
comparison with the thermal energy of the plasma. When this inequality becomes strong, 
virtually the entire energy of the directed motion of the ions will be expended on heating 
the electrons [4]. Since the ions almost do not heat up in this process, it thus follows 
that the density jump in the shock-wave front should be due to not to the ionic viscosity 
but to other effects. On the basis of these concepts, we propose a shock-wave structure in 
which the balance of the material, momentum, and energy fluxes is ensured by the formation, 
in the wave front, of a collisionless potential jump corresponding to the ionic-acoustic 
shock wave [5-7] and dissipation of the flux of ions reflected from that potential jump. 

On the basis of general concepts let us analyze the structure of strong shock waves in 
a plasma without a magnetic field. As is known [i], jumps in the parameters in a shock- 
wave front in a plasma as in an ordinary gas satisfy the relations 

noU = n,,u2, Po + no mu~ = P2 A- n~mu 2, ( 1 )  

Wo + u~/2 -= w2 + u~/2~ 

where the subscript 0 pertains t~ parameters of tl~ unperturbed plasma and the subscript 2 
pertains to parameters behind the shock-wave front, p = n i T ~ + n e T e ( n i ,  ne are the ion and 
electron densities), w = (?/(?--I))(T~ + Te) is the enthalpy, u is the velocity of the shock 
wave, and y is the adiabatic exponent. 

The relations taking into account the conservation of the fluxes of matter, momentum, 
and energy in a collisionless ionic-acoustic jump with allowance for the jump in the electric 
potential generated by reflected ions have the form [7] 

(n! - -  n~)u 1 = n2u2, nou2~ exp . 1  + (nf q- n~)ul ~ = 

= n2u2 2 + nous 2 e x p , ,  

(t /2)ul 2 f f - , l u s  2 = ( l /2)uz2+ ~u~ 2, n / ~  n r - - - - -  

= no e x p  ~1, n2 = no e x p  ~ .  

(2) 

Here no is the concentration of the unperturbed plasma, ul is the velocity of the matter (in 
the system of the wave) directly in front of the ionic-acoustic jump, n2 and u2 are the plasma 
density and velocity behind the shock-wave front, nr is the density of reflected ions, nf is 
the density of ions running into the ionic-acoustic jump, TI = e~i/T e is the potential produced 
by the reflected ions, and ~ = e~/Te is the total potential jump in the shock wave. 

Equations (2) are valid, generally speaking, for specific values of M at which the poten- 
tial distribution in the wave front is monotonic. At other values of M the potential distri- 
bution becomes oscillatory [6, 7] and Eqs. (2) give a fairly accurate estimate of the average 
values of the parameters behind the ionic-acoustic jump. 
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From (2) we obtain the following expression for the Mach number MI at the ionic-acoustic 
jump: 

(~ I1  ~--- Ul/Us, ~2 = l't2/Us, US ~" ~ Te/m). 

(3) 

The solution of Eq. (3) reduces to a search for those values of the function F(x) =(i+z 2) 
exp [--(I/2)x=],to which two different values of x correspond. The graph of the function F(x) 
is shown in Fig. i. Clearly, x = MI at x > 1 and x = M2 at x < i. At F(x) = 1 we have the 
limiting value MI = 1.6, which accords with the result of [5]. 

We must ascertain how the general relations (i) can be satisfied with allowance for the 
fact that a potential jump corresponding to the collisionless ionic-acoustic shock wave des- 
cribed by Eqs. (2) is formed in the shock-wave front. Since the plasma temperature does not 
change at the potential jump in the ionic-acoustic shock wave, the heating indicated by the 
general relations should =ccur during dissipation of the flux of ions reflected from the 
potential jump, The reflected ions relax mainly on electrons [4] and the distance over which 
the reflected ions relax is substantially shorter than the size of the hot electron zone. 
The corresponding density (pedestal) can be assumed to be isothermal and electrons here are 
described by the Boltzmann distribution while the width of the jump is determined by the mean 
free path of the reflected ions. 

Obviously~ the general relations (i) should be satisfied at the complete density jump, 
taking into account the jump upon dissipation of the flux of reflected ions and the collision- 
less jump. Since the ions remain practically cold, in order to ensure the necessary pressure 
jump the electron temperature directly behind the density jump should be twice as high as 
follows from the general relations (I) on the assumption that the plasma is isothermal behind 
the front. Only in this case will the general relations be satisfied as a result of the equa~ 
lization of the temperatures. We have in mind here the dissipation of the reflected ion flux 
in Coulomb collisions, but the qualitative picture is preserved for dissipation in collective 
effects as well. 

The equations of conservation of the flux of matter, momentum, and energy on the pedestal 
on the assumption of an isothermal density jump have the form 

nou = (n! --n~)ul, nou~ = nou, ~ exp ' 1  

+ (nj + n~)ul ~, ( l / 2 )u  2 - -  (1/2)ul  ~ + ~lu~ 2 -f- u~ ~. (4) 

These equations, along with (2), form a closed system which determines all the quantities in 
the front in terms of the parameters of the unperturbed plasma and the shock-wave velocity. 

The structure formed thus is self-consistent in the sense that the reflected ions produce 
the conditions for the formation of a collisionless shock wave, which in turn ensures the 
necessary flux of reflected ions. 

We require that the conditions behind the front of a collisionless ionic-acoustic shock 
wave accord with the conditions behind the front of the entire shock wave described by Eqs. 
(I) (except for the condition of isothermality). Then, using the first of Eqs. (i), we can 
rewrite Eq. (3) as: 
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(1  + M D  - t = o = (5) 

It is significant here that M* tends to an asymptotic value when the velocity of the shock 
wave increases without bound. We assume that the shock wave propagates in an isothermal 
plasma, i.e., Tio = Teo. Since a hot electron zone exists in the wave front, the density 
jump moves with an essentially nonisothermal plasma. On the other hand, we know that the 
temperature jump in the front of a strong shock wave is proportional to M 2, where M = 
u/]/?(Te~- Ti)/m. Consequently, M* determined for the density jump from the temperature of 
hot electrons differs substantially from the M determined from the temperature of the 
unperturbed plasma and tends to a constant value as M increases without bound. Since the 
electron temperature in the region of the density jump is twice as high as the temperature 
behind the shock wave, then M* = M y ~ .  From Eqs. (I) in the case of a strong shock wave 
it follows that the asymptotic value is M* =(?+i)/~2(?--~). At ~ = 5/3 we have M* = 2.3. 

From Eq. (5) at M* = 2.3, i.e., as M + ~ and n2/n0 + 4, we obtain MI = 1.37. From Eqs. 
(2) for Ml = 1.37 we find ~i = 0.6, nr/n0 = 0.08, nl/n0 = 1.8, and ~ = 1.4. As long as the shock 
wave is sufficiently strong, M* and n2/n0 change only slightly as M increases. The value of MI 
remains virtually constant in this case. For example, at M = i0 we have M* = 2.27 and n2/n0 
= 3.88 and the corresponding values are MI = 1.36 and nr/n0 = 0.07. 

As follows from the calculations in [6], M = i0 (MI = 1.36, Te/Ti - 60) corresponds 
roughly to the minimum M at which a collisionless potential jump can form (the potential has 
monotonic profile). At lower values of M the energy of the reflected ion flux is insuffi- 
cient to ensure that the plasma is nonisothermal as required. 

The structure of the potential in the shock-wave front and the distribution of the 
electron and ion temperatures are shown in Fig. 2. A potential jump with respect to ~i is 
formed in the relaxation region of the flux of reflected ions. The jump from ~i to 
is a collisionless shock wave. The distribution of the electron temperature has a maximum 
in the region of the ionic-acoustic jump, since the flux of reflected ions dissipates ahead 
of it. The electron temperature then decreases smoothly and the ion temperature rises smoothly 
to the value behind the shock-wave front, which follows from the general relations at a shock 
discontinuity (i). 
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